Neuronal and non-neuronal aromatase in primary cultures of developing zebra finch telencephalon.
نویسندگان
چکیده
Estrogenic metabolites of circulating androgens have important effects on the organization and activation of neural circuits controlling reproductive behavior and physiology in males of many vertebrate species. Previous studies indicate that aromatase, the enzyme that converts androgens to estrogens, is expressed most abundantly in neurons in limbic brain regions. Songbirds are unique in that aromatase is expressed at unusually high levels throughout the telencephalon of both males and females. We assume that estrogens formed in the telencephalon itself masculinize neural circuits controlling song, since the brain is a major source of circulating estrogens in adult males. However, the cellular localization of telencephalic aromatase in songbirds remains unknown. We have established primary cultures from telencephalons of developing zebra finches and found aromatase activity (conversion of 3H-androstenedione or 3H-testosterone to 3H-estrone plus 3H-estradiol) at some of the highest levels reported for brain tissue of any species. Both neurons and glia were identified in these cultures based on cell morphology and labeling by specific immunohistochemical markers. However, when culture conditions were manipulated to reduce the incidence of either neurons or glia by varying the age of cultures or their plating density, treating with the neurotoxin kainic acid, physically shaking off loosely attached neurons, or preparing cultures in media that encouraged enrichment of neurons, high levels of aromatase persisted. Furthermore, Northern blot analysis of total RNA extracted from enriched neuronal or glial cultures indicated the presence of aromatase mRNA in both cell preparations. In situ hybridization with a zebra finch aromatase cDNA probe conjugated to digoxigenin showed the cultures contained darkly labeled neurons and lightly labeled non-neuronal cells, presumably astrocytes. We conclude that aromatase is expressed in both neuronal and non-neuronal cells in these cultures, suggesting that both cell types may also express the enzyme in vivo. The presence of aromatase outside of neurons suggests that glia may be targets of estrogen action or that glia may supply some estrogen to the estrogen-sensitive neural circuits in this species.
منابع مشابه
Subcellular compartmentalization of aromatase is sexually dimorphic in the adult zebra finch brain.
The vertebrate brain is a source of estrogen (E) via the expression of aromatase (E-synthase). In the zebra finch (Taeniopygia guttata), despite documented dimorphisms in E-action, no differences are detectable in circulating E, or the neural levels of aromatase transcription, activity, or somal protein expression. Studies of aromatase expression at the light- and electron-microscope levels rev...
متن کاملInteractions between nerve growth factor binding and estradiol in early development of the zebra finch telencephalon.
The zebra finch telencephalon exhibits rapid and substantial development in the first few weeks after hatching. In parallel, the rate of estradiol synthesis is very high in the zebra finch forebrain, and estradiol can have potent neurotrophic effects in specific telencephalic regions, including those that control the learning and production of song. In an attempt to elucidate mechanisms regulat...
متن کاملAcute and chronic effects of lithium on BDNF and GDNF mRNA and protein levels in rat primary neuronal, astroglial and neuroastroglia cultures
Objective(s):Theneuroprotective effect of lithium has been attributed to its therapeutic action. However, the role of glial cells particularly astrocytes, and the possible interactions between neurons and astrocytes in neuroprotective effects of lithium have been disregarded. Thus, the aim of this study was to evaluate the direct effects of lithium on brain derived neurotrophic factor (BDNF) an...
متن کاملEffects of different culture media on optimization of primary neuronal cell culture for in vitro models assay
Background: In vitro model studies are becoming increasingly popular for experimental research designs. They include isolation and expansion of cells of a particular tissue, such as the nervous tissue which contributes to understanding the underlying mechanisms in many pathologies. It enables the scrutinization of intracellular signaling pathways responsible for cell death. OBJECTIVES: In the ...
متن کاملInterspecies Avian Brain Chimeras Reveal That Large Brain Size Differences Are Influenced by Cell–Interdependent Processes
Like humans, birds that exhibit vocal learning have relatively delayed telencephalon maturation, resulting in a disproportionately smaller brain prenatally but enlarged telencephalon in adulthood relative to vocal non-learning birds. To determine if this size difference results from evolutionary changes in cell-autonomous or cell-interdependent developmental processes, we transplanted telenceph...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- The Journal of neuroscience : the official journal of the Society for Neuroscience
دوره 14 12 شماره
صفحات -
تاریخ انتشار 1994